Consistent subgrid scale modelling for lattice Boltzmann methods

نویسندگان

  • ORESTIS MALASPINAS
  • PIERRE SAGAUT
چکیده

The lattice Boltzmann method has become a widely used tool for the numerical simulation of fluid flows and in particular of turbulent flows. In this frame the inclusion of subgrid scale closures is of crucial importance and is not completely understood from the theoretical point of view. Here, we propose a consistent way of introducing subgrid closures in the BGK Boltzmann equation for large eddy simulations of turbulent flows. Based on the Hermite expansion of the velocity distribution function, we construct a hierarchy of subgrid scale terms, which are similar to those obtained for the Navier–Stokes equations, and discuss their inclusion in the lattice Boltzmann method scheme. A link between our approach, with the standard way on including eddy viscosity models in the lattice Boltzmann method is established. It is shown that the use of a single modified scalar relaxation time to account for subgrid viscosity effects is not consistent in the compressible case. Finally, we validate the approach in the weakly compressible case by simulating the time developing mixing layer and comparing with experimental results and direct numerical simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows

A subgrid turbulence model for the lattice Boltzmann method is proposed for high Reynolds number fluid flow applications. The method, based on the standard Smagorinsky subgrid model and a single-time relaxation lattice Boltzmann method, incorporates the advantages of the lattice Boltzmann method for handling arbitrary boundaries and is easily implemented on parallel machines. The method is appl...

متن کامل

Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method

The recently introduced inertial-range IR consistent Smagorinsky model and the classical Smagorinsky model are applied to the large-eddy simulation LES of decaying homogeneous isotropic turbulence based on the lattice Boltzmann method LBM , which is implemented using the 19-velocity D3Q19 lattice model. The objectives of this study are to examine the effectiveness of the LES-LBM technique for s...

متن کامل

Adaptive filtering for the lattice Boltzmann method

In this study, a new selective filtering technique is proposed for the Lattice Boltzmann Method. This technique is based on an adaptive implementation of the selective filter coefficient σ. The proposed model makes the latter coefficient dependent on the shear stress in order to restrict the use of the spatial filtering technique in sheared stress region where numerical instabilities may occur....

متن کامل

Direct and large-eddy simulation of turbulent flows on composite multi-resolution grids by the lattice Boltzmann method

In order to properly address the simulation of complex (weakly compressible) turbulent flows, the lattice Boltzmann method, originally designed for uniform structured grids, needs to be extended to composite multi-domain grids displaying various levels of spatial resolution. Therefore, physical conditions must be specified to determine the mapping of statistical information (about the populatio...

متن کامل

A Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method

A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015